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Abstract. It is shown, in terms of the Nambu-Jona-Lasinio theory and the 
Coleman-Weinberg mechanism, that supersymmetry breaking can be realized dpami-  
cally due to radiative correction even in the Wess-Zumino model. Supersymmetry 
behaviour at finite temperatures is also investigated and it is shown that the s u p e r s p  
metry broken dynamically at zero temperature can be restored at finite temperatures. 

1. Introduction 

The spontaneous breaking of supersymmetry and its behaviour at finite temperatures 
has been investigated by many authors [l-91. The usual method for realizing 
spontaneous breaking of supersymmetry is adding a gauge-invariant but parity- 
violating term [2] ED (Feyet-Iliopoulos term) to the Lagrangian. The adding of the 
Feyet-Iliopoulos term to the Lagrangian leads to mass splitting between bosons and 
fermions in the supermultiplets and, hence, the supersymmetry breaks down sponta- 
neously. It has been shown, however, that spontaneous breaking of supersymmetry 
does not occur for the interaction of a chiral superlield with itself [2] (such as the 
Wess-Zumino model). Spontaneous breaking of supersymmetry may occur only for 
the interaction of more than one, say N, chiral superlields [4] in the absence of any 
gauge fields. 

A parallel development is the study of supersymmetry behaviour at finite tempera- 
tures. Some authors have shown [5,6] that at zero temperature the supersymmetry is 
not easy to break spontaneously, but that finite temperatures automatically break the 
supersymmetry. They argued that the supersymmetry broken at zero temperature 
cannot be restored at finite temperatures. Finite temperatures always break supersym- 
metry. 

However, since supersymmetry is so special, one would like to somehow maintain 
it at high temperatures [lo]. This prompted Van Hove to propose [7] a modified 
definition of order parameters at finite temperatures and to examine supersymmetry 
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behaviour at finite temperatures. Unfortunately, this modified definition of order 
parameters still does lead to the expected behaviour of supersymmetry at finite 
temperatures. 

Recently, however, some authors [ll-1.51 have again studied supersymmetry 
breaking and its behaviour at finite temperatures. Cahill [ l l ]  has shown, in terms of 
the Coleman-Weinberg (cw) mechanism) [16], which is based on the method of 
effective potential and putting in a three-dimensional momentum cut-off, that the 
fermion zero-point energy (radiative corrections) in the effective potential breaks the 
supersymmetry in the massless Wess-Zumino model. 

The purpose of the present paper is to investigate the behaviour of supersymmetry 
at finite temperatures in terms of the Nambu-Jona-Lasinio (NIL) theory [17] and the 
cw mechanism. The key point of our method is to establish the self-consistency 
equation for the order parameter rather than to define the effective potential at finite 
temperatures and to solve the self-consistency equation by putting in the momentum 
cut-off. We will show that the supersymmetry broken at zero temperature can be 
restored at a finite temperature. 

The paper is organized as follows. In section 2 we will briefly review the NIL theory 
and show, in terms of the theory and the cw mechanism, that the contribution of the 
self-energy part of the fermion to the self-consistency equation for the order para- 
meter will generate different dynamical masses for different fields and leads to mass 
splitting between fermions and bosons. The non-vanishing vacuum expectation of the 
order parameter also leads to the non-vanishing vacuum expectation value of an 
auxiliary field, and the supersymmetry should be broken down. 

In section 3 we will investigate supersymmetry behaviour at finite temperatures 
and shown, by solving the self-consistency equation for the order parameter at finite 
temperatures, that the supersymmetry whjch is broken dynamically at zero tempera- 
ture can be restored at a critical temperature T C = f i A / z ,  where A denotes the 
momentum cut-off. Next, we will study the critical temperature for the massive 
Wess-Zumino model by dimensional analysis and fmd T,- [A’/z’ + am~g’]’’, with 
mo being the original mass of the fields in the model. Finally, we summarize our 
conclusions. 

2. NJL theory and supersymmetry breaking 

As is well known, Nambu and Jona-Lasinio suggested, in 1961, that the nucleon mass 
arises largely as a self-energy of some primary massless fermions. The N ~ L  model is 
based on the Lagrangian density 

%= %o + (1) 
where To is the free Lagrangian 

and 
% = +iiW 

2, =.rgI(Yr*)’- (IJYI*)’I. 

is a four-fermion interaction of the type 

Instead of diagonalizing go and treating 2, as a perturbation, Nambu and 
Jona-Lasinio introduced a self-energy Lagrangian %,= Gm$q and rewrote the 
Lagrangian (1) as 

ie = (%O+ 3$) + ( 9 1  --2f3). (4) 
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The crucial assumption of the NIL model is that, despite vanishing of the bare 
fermion mass, the physical mass m of the fermion is non-zero. Then, by using Dyson's 
mass renormalization prescription, the Lagrangian can be written as 

2?=2?e; + 3; ( 5 )  

2?b=ly(ia-m)* (6) 
2; = 2l + dmlyqj. (7) 

with 

The self-mass 6m is given by 

and the right-hand side of equation (8) can be calculated, to the first order in g, from 
the self-energy diagram of the fermion. Since m,,=O, we have m=dm and so one 
obtains the self-consistent equation for the physical mass of the fermion: 

Nambu and Jona-Lasinio evaluated 
d4P i -__ J (2n)4 P' - m' m=2ig Tr SdO) = 8gm 

or, assuming m#O, 
d4P i 

1=8g -- J ( 2 4 4  PZ - m'' 

In equation (10) 
d4P 1 

SdO)= ~- I ( 2 ~ ) ~  P' - m' 

represents the contribution of the closed-loop (self-energy) diagram of fermions. 
Equation (11) gives 

gAz- _- 2n' I - f ln($+l )  A' 

by introducing the invariant momentum cut-off P2=A2 [16,17]. Since the right-hand 
side of equation (13) is positive and s 1 for real A and m, one gets the constraint 
inequality 

0 < 2nz/gA'< 1. (14) 
We see that in the NIL theory, starting from a massless fermion, one generates the 

physical mass of a fermion self-consistently. 
Lurie and Madarlanf [U] have shown the equivalence between Lagrangian field 

theory of the four-fermion type considered by Nambu and Jona-Lasinio and a 
Lagrangian theory of the same fermion fields with coupling of the Yukawa type, 

SY =So+ G@pDs + G $ ~ # C J ~  (15) 
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and obtained the fermion mass in the equivalent Yukawa theory in the same way. 

the Lagrangian density [19] 
Consider now the massless Wess-Zumino model of supersymmetry described by 

3 = Zo + %E (16) 

Z o = ~ [ ( ~ , A ) z + ( ~ , B ) Z + i $ ~ ~ + F + G z ]  (17) 

with 

gg= -g[(A”BB2)F+2ABG+$(A-y5B)*]. (18) 
In equations (17) and (18), A and B are, respectively, a scalar and a pseudoscaler 
field, y is a Majorana spinor and F, G are auxiliary fields. 

The field equations for the auxiliary fields are given by 

F=g(A2 - 8’) (19) 
G = 2gA B (20) 

which can be used to eliminate the auxiliary fields from the Lagrangian. The result of 
their elimination is 

5?==f[(a,A)’+(~,B)’+i$glW]-~g2(Az+ BZ)’-g$(A -y5B)q.  (21) 
We now introduce the external sources JA(x) ,  J&), j v ( x )  and Jv(x)  coupled to the 
fields A ,  B, * and $, respectively. Then the Lagrangian becomes 

3[J]=5?+JAA+JBB+jv*+$Jv (22) 

O A  +2g2A(Az+B2)=-g$*+JA(x) (23) 
OB + 2g2B(A2 + B Z )  =g$y5Q + JB(x) (24) 
[i& 2g(A - ysB)]+ = -U&). (25) 

and the equations of motion following from the Lagrangian (22) are given by 

As usual, the generating functional is given by 

aJ]= I [&I [dBl WI [d$I exp( d4x%[Jl). (26) 

By using the generating functional Z[J] .  the vacuum expectation value of a field, say 
A(x), in the presence of external sources can be found as 

with 
w[J]  = (Mi) In Z[J] .  (28) 

Let us now take vacuum expectation values of equations (23) and (24). Then one 
gets 

W% + &?(A3)’,+ 2gzC4Bz%= -g($ut% + JA(x)  (29) 

UBX+ 2g*(BA2X + 2 g z ( B 3 % = g ( ~ ~ ~ W % + J ~ ( ~ ) .  (30) 
By using equation (U), it is easy to calculate the vacuum expectation values of the 
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terms (A');, (AB');, (BA'); and (B3)& and to the lowest-order approximation in h, 
equations (29) and (30) become 

2g2A:+2gA&= -($y)=iTrS,(O) (31) 
2gB: + 2g&&= ($Ys$J) = -iTrySS~(o)l (32) 

Ao = (4;11=0 (33) 

Bo= (B);l,=o (34) 

TrSAO) = i($(x)$JW;l,=o (35)  

Tr[vsSF(0)l = ~ ( ~ ( X ) Y & ) ) ~ I ~ = ~ .  (36) 

when we take the limit J+O. In equations (31) and (32), 

and 

The right-hand sides of equations (31) and (32) represent closed-loop diagrams which 
correspond to the self-energy of the fermion. The self-energy of the fermion can be 
found from equation (25). From equation (25) we obtain Schwinger's functional 
differential equation 

To the lowest order in h and in the limit J - 0 ,  equation (37) reduces to 

[ia - 2g(A0- r&~)l&G - y )  = d"(x - Y ) .  (38) 

So the fermion propagator in the momentum space can be written as 

Substituting equation (39) into equations (31) and (32) yields 

The straightforward calculation shows that equations (40) and (41) can be simplified 
to the same equation: 

We see from equation (42) that it determines only the magnitude of CO= (Ao, Bo), 
not its direction. The direction is essentially arbitrary. The arbitrariness in the 
direction of CO reflects infinite degeneracy of the vacuum state. If we take CO to lie 
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along a particuIar direction, say the Aa direction, then equation (42) becomes simply 
an equation for Aa (Bo = 0): 

d4P i 
(h)' P2 - 4g2A:' (43) 

The frame in which BO = 0 is characterized by a vacuum state which is an eigenstate 
of parity. For the space inversion invariance to hold (note that our original Lagrangian 
(21) is invariant under the space inversion transformation), here and afterwards we 
take Bo = 0. Equation (43) is a self-consistency equation for the order parameter A* If 
we set 

(44) mz-42  2 *- gAa 
in equation (43), it reduces to the self-consistency equation for the physical fermion 
mass myl: 

We see from equation (45) that starting from a massless fermion one generates the 
physical mass self-consistently via the cw mechanism. 

The integration in equation (45) is quadratically divergent. Introducing a momen- 
tum cut-off A and performing Wick rotation one can make the integration mean- 
ingful. The result is given by 

Translating the scalar field A as 

A+A'=A-Ao (48) 
and rewriting the Lagrangian (21) in terms of A +Aa instead of A, one obtains 

% = ~ [ ( ~ ~ ) 2 + ( ~ , B ) 2 + i $ & - m ~ A 2 - m ~ B 2 - m , ~ ~ ] - ~ g Z ( A 2 +  B2)' 

-g$(A - ~5B)ty - 2g2Ad(A;+A2 + 8') (49) 
with 

m2-6 2 2 
A -  gAO 

mi = 2g2Ag (50) 
m9=2gA* 

Evidently, the boson fields A ,  B and the fermion field q have acquired different 
masses mA, mB and m,, respectively, due to the non-vanishing vacuum expectation 
value of the field A which is determined by the self-energy of the fermion. 
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We see from equation (50) that the masses m,, mB and m, satisfy the 
Ferrara-Giradello-Palumbo mass formula [20] 

(-l)”(W+ l )m:=6g2A~+2gZA~-8g2A~=0.  (51) 
I 

Here m: is the squared masses associated with a field of spin J .  
It is worth noting that, apart from the solution A:+ EgZO, equations (40) and (41) 

also admit the trivial solution A,=B,=O which preserves supersymmetry. A natural 
question that then arises is whether the non-trivial solution A$ + BiZO corresponds to 
the minimum of the effective potential. This correspondence can be verified by using 
the effective potential [16]. For the massless Wess-Zumino model the effective 
potential is given by 

V e , = + g 2 ( A ’ + B 2 ) Z + f ~  (-l)”(W+ l)J$(P+m;)’’’. (52) 
J 

The momentum integral in equation (52) can be found by introducing the momentum 
cut-off JPJ =A. Cahiil has shown [ll], through numerical calculation, that the 
effective potential (52) has a minimum at Aa+B:#O. So we conclude that in the 
massless Wess-Zumino model the self-energy of the fermion gives masses to the 
particles and moves the minimum of the effective potential away from zero so as to 
break the supersymmetry. 

From equations (19) and (20) we find the expectation value of the auxiliary fields: 

(F)=g(A’)-gA:#O (53) 

(G)=2g(A)(E)=O. (54) 

The only case where (F) = (G) = 0 is A,= Eo = 0.  The non-vanishing expectation value 
of the auxiliary field F is further evidence of supersymmetry breaking. 

Note that, in our model, there is no Goldstone boson or fermion after the 
supersymmetry breakdown. This result is very similar to symmetry breaking in the 
linear u-model. In the linear a-model the linear term CO induces symmetry breaking 
(externally) but there is no Goldstone boson. 

It has also been claimed [6] that there are no Goldstone fermions associated with 
supersymmetry breaking. 

3. Supersymmetry restoration at finite temperatures 

In the previous section we have established the self-consistency equation for the order 
parameter A. and examined dynamical breaking of supersymmetry. If a correspnd- 
ing equation at finite temperatures can be established then we can investigate 
supersymmetry behaviour at finite temperatures by solving the. self-consistency 
equation. We wish to find such a temperature T, at which the order parameter A,,@) 
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reduces to zero and the mass splitting between bosons and fermions will be elimi- 
nated. 

It is well known that, at finite temperatures, all physically interesting quantities 
such as Green's functions in a system are given not by the vacuum-to-vacuum 
transition amplitude as in the usual field theories, but by the statistical average defined 
by 1211 

Tr[exp(-BH). . . ] 
Tr exp(-BH) (. . .)= (55) 

where B is proportional to the inverse of temperature and H denotes the Hamiltonian 
of the system. By using the field theory at finite temperature [22], the statistical 
average of the scalar field A and the fermion propagator S x x  - y) in the presence of 
an extemal source can be written, respectively, as 

with 

Here XE[Jl denotes the Lagrangian 2 [ J ]  in Euclidean space. Here and afterwards we 
takeh=l .  

The important observation in field theory at h i t e  temperatures is the fact that the 
finite-temperature Green's functions satisfy the same differential equations as the 
zero-temperature Green's functions except that they satisfy periodic (anti-periodic for 
the fermion case) boundary condition for an imaginary time z, and the momentum 
P = (Po, P) has to be replaced by 

with 

0" = (2n + I)??/@ (n integer) (60) 

for the fermions. 
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So, at finite temperatures, the self-consistency equation (43) changes to [23,24] 

with 
E' =P' + 4gzAi(B). 

We first calculate the summation in equation (61): 

with a'= (BEh)' .  The summation in equation (63) can be simplified further to 

By using 
n cosha(z-x) 1 

n2+az-2a sinhan 2n 
__  

* = I  

and 
coth 2r = (tanh x + coth x)/2 

one gets 

(65) 

m 

(67) 

1 z 
C 
n=-m 

Thus, the self-consistency equation at finite temperature, equation (61), can be 
reduced to 

with 

The integration in equation (69) is divergent. As before, introducing a momentum 
cut-off A one can make the integration finite. The result is 
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In order to calculate the integration (70), set x =  ]PIP, then the integration (70) can be 
written as 

We are interested in supersymmetry behaviour at high temperatures and wish to find 
the critical temperature T. at which the order parameter A @ )  tends to zero. So the 
integration (72) can be calculated in the approximation y=O [24]. In this approxima- 
tion the integration (72) t u m s  out to be 

Using 

Substituting equations (71) and (76) into equation (68) and taking the limit A,(B)-*O, 
one gets 

or 
V3A 

T,=-. 
Jc 

Thus, we have found the critical temperature T, at which the order parameter A,(,!?) 
tends to zero, and the mass splitting between bosons and fermions should be 
eliminated. 

It is worthwhile pointing out that the critical temperature T, in equation (78) 
depends only on the momentum cut-off A. This is because in the model considered in 
this paper all the particles are massless. If we start from the massive Was-Zumino 
model, the masses of bosons and fermions after supersymmetry breakdown will be 
given, respectively, by 

mfi = mi + 6gm& + 6g'Ai 

d B = m ~ + 2 g m d o + 2 g 2 A ~  (79) 
m8 = ma + ZgA, 

and we can estimate 
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by dimensional analysis. (This result is very similar to the critical temperature of chiral 
symmetry restoration. See [23].) Since the second term in equation (80) is pro- 
portional to m$gz, the critical tempertaure T. depends only on the momentum cut-off 
A when the mass 

The supersymmetry restoration at finite temperature can also be shown from 
equation (19). After supersymmetry breaking has taken place, equation (19) gives 

in the original Lagrangian is zero. 

F=g(A +Ao)’- B2=g(A2-B2 +2AAo+Ai). (81) 
Takicg the statistical average for both sides of equation (81), one gets 

( (F))=g(( (A2)) - ( (B2))+3A~(B))  

where ((. . .)) denotes the statistical average and 

p; = w; +p* 

”A = 6g2A%B) E -  gAo(B). 

w. = ZnnIB 
m 2 - 2  2 2 

We see from equation (83) that, when Ao(B)+O, the masses mA = mB = 0 and hence 
the two integrations in equation (82) will be cancelled mutually for the same 
momentum cut-off A. So the statistical average of the auxiliary field Ftends to zero at 
the critical temperature. This is another sign of supersymmetry restoration at finite 
temperatures. 

In [2],  the vacuum expectation value of the auxiliary field D is given by 

(D) = +gu’ - 5 (84) 
where U is the vacuum expectation value of the scalar field and 5 denotes the 
coefficient of the Feyet-Iliopoulos term. We see from equation (84) that at k i t e  
temperature (D(B)) does not vanish even when u(B)  = 0, because is temperature- 
independent. Thus, supersymmetry cannot be restored at finite temperatures. 

4. Conclusions 

We have shown that supersymmetry breaking can be realized via the NJL theory and 
the cw mechanism even in the Wess-Zumino model of supersymmetry. A different 
finite-temperature behaviour appears in the theories in which a symmetry is broken 
dynamically at zero temperature. We have shown, by solving the self-consistency 
equation for the order parameter at finite temperatures, that supersymmetry which is 
broken dynamically at zero temperature can be restored at a critical temperature. 
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